Methanol Production via Bireformation of methane followed by Fischer-Tropsch synthesis

Project number: 
UA Department of Chemical and Environmental Engineering
Academic year: 
Natural gas is primarily methane, a greenhouse gas that is harmful to the environment. The team designed a process to synthesize natural gas into the useful – and much less harmful – substance, methanol. This is created via the bi-reforming of methane followed by a Fisher-Tropsch (FT) synthesis. The process could be applied at any landfill or livestock area producing methane. More in-depth analysis was done for large-scale production in partnership with a local fueling station in Fort Worth, Texas.

The process uses steam methane reformation and dry methane reformation processes running in parallel, with their respective product streams merged before being sent to the Fisher-Tropsch synthesis. This produces syngas with a hydrogen/carbon monoxide molar ratio closer to 2:1, the optimal feed stream to the Fischer-Tropsch gas-to-liquid synthesis. Optimized nickel-based and iron-based catalysts were used to increase the methanol production and make the process more economically sustainable.

Get started and sponsor a project now!

UA engineering students are ready to take your project from concept to reality.