Project number
17065
Organization
L3Harris
Academic year
2017-2018
Project goal: To obtain experimental data for lift, drag and 3-axis moments of inertia for one quadcopter rotor at various motor speeds, air speeds and angles of attack. The team designed a test apparatus for a single rotor of the quadcopter and tested it in the University of Arizona subsonic wind tunnel. Design requirements included size, vibration frequencies to avoid, cost, and wind tunnel compatibility. Thrust testing conducted inside the wind tunnel determined the position and size of the model. Data was recorded using a load cell and analyzed using a Microsoft Excel model. To understand the vibration that the model would experience at various motor speeds and to ensure the safety of the wind tunnel equipment, accelerometers were mounted on the test model, which was mounted to a sturdy grounded beam. MatLab was used to analyze the data and provide wind tunnel personnel with the information they needed to approve use of the equipment. The sponsor will use data recorded by the wind tunnel balance to optimize autopilot control algorithms for smoother and safer transition events.