Dynamic Bioreactor for Engineered Cartilage Tissue

Project number
18066
Organization
UA Department of Biomedical Engineering
Academic year
2018-2019
There are no current medical or surgical treatments to restore osteoarthritic joints to their native condition, and osteoarthritis patients commonly require joint replacement. Scientists have used stem cells to produce cartilage-like tissues as a new treatment for damaged cartilage. One approach to improving the quality of tissue-engineered cartilage is to apply a load to the engineered tissues while they are developing. The team analyzed and modeled a variety of force applicators (primarily motors and gear systems) to develop a final optimized system that ensures the application of exacting and controllable forces.Additionally, the team developed a strain gauge and microcontroller feedback system to provide even more precise control of the forces. The system designed produces axial and shear loads that replicate the pattern of strain that occurs in vivo. An Arduino board and some other microcontroller components control the system. The system’s forces, torque and accuracy exceed all requirements. The system also supplies a sterile environment in which cells can grow. This will allow further testing of methods to improve the quality of engineered tissues via the application of mechanical loading.

Get started and sponsor a project now!

UA engineering students are ready to take your project from concept to reality.