Project number
21025
Organization
UA Department of Electrical and Computer Engineering
Academic year
2020-2021
Project Goal: Design and build a prototype of an electronic continuously variable transmission, or E-CVT, to replace the current mechanical CVT on the Baja SAE race vehicle.
The Baja race car's mechanical CVT had two major issues that served as the primary reasons for undertaking this project. The first issue was the tedious and error-prone process of tuning the CVT. The second issue was the mechanical CVT not being properly sealed, which put the components inside at risk for dirt and water damage. The team designed and built a prototype E-CVT to solve these issues for the Society of Automotive Engineers, or SAE, Baja Competition.
The E-CVT design consists of two pulleys that connect the engine and gearbox and which change their diameter based on data collected from a telemetry systemin the engine. The E-CVT uses electric motors in conjunction with sensors and microcontrollers to algorithmically change the gear ratio between the engine and gearbox. The E-CVT's insulated wiring and protective casing at IP54 certification level ensures it is protected from water and dirt in the off-road racing environment.
The new system offers greater adjustability and increased reliability. Acceptance tests showed the E-CVT system was capable of handling overvoltage and overcurrent, as well as collecting and sending data to the central data collection microcontroller. The bench test of the completed E-CVT displayed the changing gears at the engine's peak power.
The Baja race car's mechanical CVT had two major issues that served as the primary reasons for undertaking this project. The first issue was the tedious and error-prone process of tuning the CVT. The second issue was the mechanical CVT not being properly sealed, which put the components inside at risk for dirt and water damage. The team designed and built a prototype E-CVT to solve these issues for the Society of Automotive Engineers, or SAE, Baja Competition.
The E-CVT design consists of two pulleys that connect the engine and gearbox and which change their diameter based on data collected from a telemetry systemin the engine. The E-CVT uses electric motors in conjunction with sensors and microcontrollers to algorithmically change the gear ratio between the engine and gearbox. The E-CVT's insulated wiring and protective casing at IP54 certification level ensures it is protected from water and dirt in the off-road racing environment.
The new system offers greater adjustability and increased reliability. Acceptance tests showed the E-CVT system was capable of handling overvoltage and overcurrent, as well as collecting and sending data to the central data collection microcontroller. The bench test of the completed E-CVT displayed the changing gears at the engine's peak power.