Project number
21045
Organization
UA Department of Biomedical Engineering
Academic year
2020-2021
Project Goal: Incorporate an automated media exchange system into a tissue engineering bioreactor for longer experiments and contamination detection.
A university bioreactor built in 2019 for complex cartilage tissue engineering worked efficiently and effectively to deliver the needed mechanical loading to engineered cartilage cells, simulating the physiological conditions of the human body. However, the overall design to reproduce the loads from humans’ natural gait onto stem cell-seeded scaffolds compromised the sterility of the growth environment, since the user had to open the bioreactor every time cell feeding needed to occur.
This new media exchange system automatically switches media within the enclosed bioreactor, removing the old medium and depositing a fresh medium in a sterile and closed reactor environment at user-dictated intervals. An added photodiode-based pH monitor, in conjunction with phenol red in the medium, detects contamination in real time.
A university bioreactor built in 2019 for complex cartilage tissue engineering worked efficiently and effectively to deliver the needed mechanical loading to engineered cartilage cells, simulating the physiological conditions of the human body. However, the overall design to reproduce the loads from humans’ natural gait onto stem cell-seeded scaffolds compromised the sterility of the growth environment, since the user had to open the bioreactor every time cell feeding needed to occur.
This new media exchange system automatically switches media within the enclosed bioreactor, removing the old medium and depositing a fresh medium in a sterile and closed reactor environment at user-dictated intervals. An added photodiode-based pH monitor, in conjunction with phenol red in the medium, detects contamination in real time.