Project number
21064
Organization
Honeywell Aerospace
Academic year
2020-2021
Project Goal: Develop an optimization model for a space-based thermal management system for a methane pyrolysis reactor.
Oxygen recovery rate for life support systems is currently limited to 50%, in part because modern systems vent waste methane. However, developments with methane pyrolysis mean that 100% oxygen recovery is feasible. The process requires extremely high temperatures, which must be properly managed for a space-based environment.
This model implements heat transfer and thermodynamic processes to calculate thermal properties of a theoretical thermal management system. It considers the constraints and limitations on the system, then calculates a range of potential dimensions and materials, giving the user a variety of options. The system converts the thermal and physical properties calculated to an equivalent system mass, which is used as a metric to choose an optimal design.
As a result, the most optimal design for the reactor is chosen from any set of provided information.
Oxygen recovery rate for life support systems is currently limited to 50%, in part because modern systems vent waste methane. However, developments with methane pyrolysis mean that 100% oxygen recovery is feasible. The process requires extremely high temperatures, which must be properly managed for a space-based environment.
This model implements heat transfer and thermodynamic processes to calculate thermal properties of a theoretical thermal management system. It considers the constraints and limitations on the system, then calculates a range of potential dimensions and materials, giving the user a variety of options. The system converts the thermal and physical properties calculated to an equivalent system mass, which is used as a metric to choose an optimal design.
As a result, the most optimal design for the reactor is chosen from any set of provided information.