Grasshopper Harvester

Project number
18025
Organization
UA Department of Entomology
Academic year
2018-2019
Grasshoppers are a major pest in agricultural fields, and pesticides are commonly used to prevent them from damaging crops. A self-driving electric vehicle was developed that collects grasshoppers by exploiting the way they hop. The harvester uses GPS to move throughout a designated area and relies on ultrasonic sensors to map the terrain and avoid obstacles. Grasshoppers cannot control the direction in which they jump, and launch themselves into the air based upon the direction they are facing. Relying on that fact, the harvester seeks to scare the grasshoppers into the air and move fast enough to catch them in a bucket like that found on a front-end loader. Vibrations from the harvester operation keep the grasshoppers from jumping and holding onto the sides of the bucket, and a conveyor belt moves the grasshoppers into an internal storage container.The storage container is modular and can be easily removed and replaced on location. Container capacity is calculated using a scale and when it is full, the harvester returns to a designated home location.

Reconnaissance Unmanned Aircraft Automation Improvements

Project number
18024
Organization
BAE Systems
Academic year
2018-2019
The software designed guides the unmanned aircraft on a 3D flight path to a predetermined location while avoiding threat zones defined by the user. The flight path is optimally generated using the A* algorithm and executed using the Ardupilot open source flight-control software. During flights, the unmanned aircraft capture and record live photos and videos of the mission. The system also gathers statistical data, such as coordinates, altitude, and size of and distance from the area of interest.The software generates a mission report that provides images of the area of interest along with statistical data about the location. These mission reports are generated using SOCET GXP, developed by BAE Systems. This data is cataloged in an online database using Amazon Web Service S3, from which a user can search and filter for more specific results. The graphical user interface for the program is completed using Node.js and Electron, an open-source framework for creating desktop applications.

Automated Scale Placement System

Project number
18023
Organization
Caterpillar Inc.
Academic year
2018-2019
An important part of machine performance analysis is knowing the weight of loaded vehicles and determining their center of gravity. The off-highway vehicle weigh station consists of two independent load cells that sit in a recessed concrete channel. Load cells are spread manually with heavy equipment to distances that accommodate vehicles of varying wheelbases. The automated scale placement system designed has electronically controlled retractable lifting rollers, winches and a distance sensor. The system installs without requiring modification to the existing load cells or scale channel and does not interfere with the weighing process. The retractable feature on the scale lifting mechanisms eliminates the need to support vehicle weights that can reach 800 tons. The system is controlled through an Arduino Mega microprocessor that interfaces with software run on a tablet. Implementation of this automated scale placement system allows a single user to prepare the weigh station for any vehicle in a matter of minutes and removes constraints the sponsor faces when needing to consecutively weigh vehicles of differing wheelbases.

Recycling Exhaled CO2 for Spacecraft

Project number
18022
Organization
Honeywell Aerospace
Academic year
2018-2019
Life support on the International Space Station and other manned spacecraft yields a methane byproduct that is vented to space. The sponsor’s methane pyrolysis reactor allows this waste methane to be reclaimed by transforming it into useful hydrogen and a solid carbon composite material. A storage box was designed and built from the carbon material with few additional resources. It is constructed out of six square carbon pieces adhered to a fabric base, which can be oriented to form a cubic container. The design employs the carbon material in an application that is appropriate to the spacecraft environment and could be used by astronauts on a trip home from Mars.It can also make use of other waste products that have reached the end of their lifetime usability, such as astronaut clothing. The box designed is simple, collapsible for easy storage, and easily scalable depending on intended use. Astronauts will be able to store experimental samples, food and other items in carbon boxes produced while breathing into a life support system that produces almost no waste.

Automated Wire Winder and Cutter

Project number
18021
Organization
Caterpillar Inc.
Academic year
2018-2019
The sponsor’s instrumentation team spends a lot of time manually spooling the lengths of wire it needs to run tests on large mining machines. Tests require multiple quantities of wire, from 15 to 150 feet in length, which must be measured, cut, wound, bound and dropped into a bin for collection. The automated system designed is housed in a vertical metal frame with a protective screen to shield the user from the operating mechanism. The system uses a standard spool of wire, which is loaded into the top of the device. The wire is threaded through a measuring device and cutting mechanism and attached to a winding drum. A touch screen allows the operator to input the desired length and quantity of the wire sections needed. The device automatically measures and spools the wire to within once inch accuracy. It cuts the wire, binds it with tape, and drops the fully prepared wire into a bin for collection at the bottom of the frame. This process repeats autonomously until the desired quantity of each wire length is achieved. If the wire supply runs out, the system stops and provides a message on the touch screen telling the operator to load additional wire. Once the wire is loaded, the system completes the interrupted job.

Automated Deburr of Hydraulic Sleeve Internal Elements

Project number
18020
Organization
RBC Sargent Aerospace & Defense
Academic year
2018-2019
The sponsor manufactures the hydraulic sleeves used to move fluid from one control port to another in hydraulic valves. Precision grinding and honing the inner surfaces of the sleeves raises small burrs on interior edges that prevent smooth operation. Burrs are removed manually, which is labor-intensive and time-consuming. The machine designed moves hydraulic sleeves up and down while a motor-powered steel brush deburrs the inner surface of the sleeve from above, requiring no human interaction after set up. To ensure that the device is compatible with all hydraulic sleeve sizes, it has been designed to accommodate interchangeable brush sizes, and the user interface allows input of various sleeve parameters.The automated deburring machine allows users to load and secure a hydraulic sleeve, and then to select a preset deburring option or manually input sleeve parameters. The machine is oil and water resistant, reduces hydraulic sleeve touch time, and meets sponsor requirements for safety and efficiency.

Three Way Heat Exchanger

Project number
18019
Organization
Honeywell Aerospace
Academic year
2018-2019
Honeywell wants to create a heat exchanger that is more efficient than the standard tube and fin design by using more than one fluid for heat evacuation. The team’s three-way heat exchanger, which has flow paths for oil and fuel and a cross-flow path for air, is designed for aircraft auxiliary power units operating under normal conditions. The design uses the additive manufacturing process of direct metal laser sintering to lower production times and cost. Features such as turbulators were added after the preliminary design to reduce heat concentrations and overall size. The heat exchanger is smaller than the current tube and fin design. Heat transfer optimization was analyzed by finite element techniques and by conducting experimental tests to verify results.

Engine Communications Card

Project number
18018
Organization
Honeywell Aerospace
Academic year
2018-2019
Universal communications cards for aircraft do not currently exist. The engine communications card designed provides a common interface between a memory bus and several signals, and features include parallel transmission of communication signals. Protocols transmitted by the card include CAN, ARINC 429, RS-485/422, MIL-STD-1533 and Ethernet. It is contained in a chassis that is resilient to vibrations and fluctuating temperatures such as those found in an aircraft engine bay. Card design is modular, allowing one or more of the input signals to be missing without affecting the operation of the card, as well as providing a basis for the design of more application-specific cards in the future.The engine communications card is suitable for most engine configurations, allowing easier serviceability.

Ultra-Fine Particle Sensor Suite

Project number
18017
Organization
Honeywell Aerospace
Academic year
2018-2019
Monitoring recycled air in aircraft, businesses and homes is important for short-and long-term health and safety reasons. The team’s ultrafine particle sensor suite monitors the concentration of harmful gases and airborne particulates and displays this information to users, who are notified when levels exceed safety thresholds, indicating that the air is unsafe to breathe. The system draws in air to six commercial sensors that detect volatile organic compounds, carbon dioxide, carbon monoxide, formaldehyde, fine particulate matter, and ultrafine particles. Through integration of software and electrical design, the sensor data is transmitted wirelessly from the sensors to a graphical user interface, where users can view air quality information and input their own concentration thresholds for each compound or particulate. Tests and analyses were completed at different pressures and temperatures to ensure that the system accounted for the varying conditions found aboard an aircraft. The sensors require regular maintenance, so pullout drawers have been incorporated in the design so that individual sensors can be accessed without disrupting the performance of the entire system.

Heat Transfer Rig

Project number
18016
Organization
Honeywell Aerospace
Academic year
2018-2019
Jet turbine engines operate at temperatures in excess of 2,000 degrees Celsius, or approximately 3,600 degrees Fahrenheit, which can limit engine performance and efficiency. To counteract this, coolant air is injected onto the engine surface to discharge the hot gasses. Research by the sponsor has shown that engine surfaces can be cooled using perforated metal sheets, or coupons, to provide a film cooling layer. The system designed to test the new method involves blowing hot air over the surface of the coupon while blowing coolant air perpendicular to the hot air flow. The hot air blown over the coupon surface is supplied via a mesh heating element powered by an external variable voltage source and an air blower. A mass flow controller blows coolant air perpendicularly through the coupon’s perforations to the rear coupon surface, which creates a film cooling layer on the opposite side of the coupon. A forward-looking infrared thermal camera is positioned to view the surface of the coupon through an infrared-transmitting acrylic sheet. This allows thermal imaging of the heat flow and temperature gradients between the perforations on the coupon surface.

Get started and sponsor a project now!

UA engineering students are ready to take your project from concept to reality.