Oil Spray Cooling on Rotating Machines
Project number
18015
Organization
Honeywell Aerospace
Academic year
2018-2019
Generators operating a lower temperatures enable a higher energy density output. The test model was designed to investigate the cooling variables of oil pressure, oil flow rate, number of nozzles, and radial distance of nozzles from the end-turn region. The improved test rig mimics the internal generator geometry and possible cooling configurations. With empirical data, these primary cooling variables were analyzed to develop a heat transfer model to determine the overall heat transfer coefficient. This model considered two separate modes of heat transfer, conduction and convection, occurring in the system. Empirical data used in conjunction with primary assumptions and boundary conditions completed the model and returned the system’s heat transfer coefficient. This improved test model can be applied to almost any generator’s cooling system configuration to optimize performance.