Airfoil Cascade Hub Injection II
Project number
23025
Organization
Honeywell Aerospace
Academic year
2022-2023
During critical stages of flight, when turbo fan engines perform at their operating limits, unfavorable atmospheric conditions can cause the direction of airflow through the engine to reverse through gaps between the engine casing and compressor rotor blades. This reverse flow is called a surge, and it can allow high temperature gases in the combustion chamber to back-flow into the compressor. This may cause catastrophic failure of the engine, necessitating an emergency landing.
To address the issue, the team designed a system to prevent backflow and 3D printed a prototype portion of a compressor with rotor blades and engine casing. It was tested by injecting a stream of high-pressure air into the gap. The team used a wind tunnel to measure changes in pressure across the airfoil when controlled by the injected stream of air. The design improves aircraft safety and reduces man-hours and costs required to repair engines after an occurrence of engine surge.
To address the issue, the team designed a system to prevent backflow and 3D printed a prototype portion of a compressor with rotor blades and engine casing. It was tested by injecting a stream of high-pressure air into the gap. The team used a wind tunnel to measure changes in pressure across the airfoil when controlled by the injected stream of air. The design improves aircraft safety and reduces man-hours and costs required to repair engines after an occurrence of engine surge.